
MPhyScas-P - Multi-Physics and Multi-Scales Solver
Framework: Parallel Simulators

Felix Christian Guimaraes Santos, Eduardo Roberto Rodrigues de Brito Junior and
Jose Maria Bezerra da Silva

Federal University of Pernambuco

Abstract. MPhyScas (Multi-Physics and Multi-Scale Solver Environment) is a computational system aimed at supporting
the automatic development of simulators for coupled problems. In despite of its completeness in what regards all stages of a
multi-physics simulation, the current version of MPhyScas supports the development of sequential simulators only. Thus, The
simulators it develops do not support any kind of communication between their computational entities besides those defined
by direct references (pointers). In this work we present an improvement of MPhyScas, which is able of developing parallel
simulators as well as sequential simulators. The basic modifications were placed on the framework of the simulator and in
the pre-processor level. In this development we took an advantage of the architecture in layers of MPhyScas-S (the sequential
framework) in order to define a hierarchical parallel computation scheme in such a way that the need for communication
between processes is automatically identified and objects are built in order to fulfill that need. Also, the hierarchy provides a
natural way of defining data structures and their access dynamics for all memory levels, providing simpler ways of dealing with
non-uniform memory access patterns. This ideas are presented in the form of a new simulator framework called MPhyScas-P.

Keywords: Finite Element Method, Coupled Phenomena, Development of Simulators
PACS: 46.15.x, 07.05.Tp

INTRODUCTION

MPhyScas uses the definition of a simulator framework as guidance to instantiate an entire simulator. The original
MPhyScas [1] provides support for the automatic building of sequential simulators only (also affected by limitations
of the framework MPhyScas-S). The new version of MPhyScas should satisfy a number of new requirements, including
the support for the development of simulators for execution in clusters of PC's. Therefore, it needs a new simulator
framework. The old simulator framework, MPhyScas-S, is a framework with the support of an extended finite element
library and a knowledge management system. The new framework, MPhyScas-P, uses the same extended library
and knowledge management system from MPhyScas-S (with minor differences). It also makes use of the concept
of layers already used in MPhyScas-S [1] in order to define a hierarchical parallel structure. Such a hierarchy is
useful for the automatic definition of synchronization schemes; data partition and distribution procedures; inter­
process communication patterns and data management across several levels of memory. Procedures are automatically
speciafized for the pre-processing; the simulation and the post-processing phases, depending on the hierarchical
distribution and on the characteristics of the hardware being used. Also, two types of communication between
processes during a simulation are identified and patterns are defined for their representation.

RELATED WORK

Definition and building of computational frameworks that support programming of simulators for multi-physics
problems have been a very active area in the last decade. For the sake of providing a context for the present work,
we classify current research efforts into only two classes: (i) libraries, which, besides providing important abstractions
for supporting data, procedures and relationships for coupled physics simulation, do not provide a deep structural
guidance (framework) for the building of simulators, and (ii) frameworks, which provide a configurable deep structure
of abstractions and patterns for the definition of simulators and their data and procedures. Important works of class
(i) are the Component Template Library (CTL) [2] and the Comsol [3]. CTL provide abstractions that support the
building of solutions algorithms for loose and tight coupling. Comsol is a commercial package and not much of its
internal behavior is exposed, but, as CTL, it does not provide a framework.

CP1148, Vol. 2, Computational Methock in Science and Engineering, Advances in Computational Science
edited by T. E. Simos and G. Maroulis

©2009 American Institute of Physics 978-0-7354-0685-8/09/$25.00

120

In the class of frameworks (class (ii)), one can find powerful packages, such as Uintah [4], Cactus [5] and Sierra
[6]. Uintah Computational Framework and Cactus Framework consist of a set of software components and libraries
that facilitate the solution of Partial Differential Equations (PDEs) on Structured AMR (S AMR) grids using hundreds
to thousands of processors. Although they do not provide a structure for simulators as done by Sierra and MPhyScas,
they are in this class due to how they bind components together; define and use coupling information and provide
access to high performance (e.g. parallel) processing through a shared service infrastructure. That characterize them
as having a configurable deep interoperability system. We detail the structure of Sierra a little bit more, because its
structure resembles MPhyScas' structure.

Sierra framework provides a structural guidance in layers composed of (from top to botom) Application, Proce­
dure, Region and Mechanics. Application articulates user-provided algorithms in order to establish high-level ac­
tivities. It uses services from a set of Procedures, which can freely articulate Regions using a set of user-provided
algorithms. A Region defines activities, which are related to a fixed geometric region, for which a mesh is provided.
Those activities are defined by user-provided algorithms. It uses services provided by a set of Mechanics. In order
to perform the desired work, a Mechanics uses a set of Mechanicslnstances and a set of algorithms. A Mechanics
implements procedures related to a specific physics - defined on a subset of its Region's mesh - and its Mechanicsln­
stances are responsible for an atomistic operation defined on a subset of its Mechanics' mesh. A Mechanics may use
another set of Mechanics, building one more layer. This may be used in multiscale computations, where a lower level
Mechanics is used to compute constitutive data for a Mechanicslnstance of a its parent [6]. If a Mechanics A needs
data from another Mechanics B (provably in another Region), the core services of Sierra provides means to transfer
mesh-dependent data from B's mesh to As mesh. The result is then stored in the Region of Mechanics A. The SIERRA
Framework core services also manage the parallel distribution of mesh objects for an application.

THE FRAMEWORK MPHYSCAS-P

In modem clusters of PC's one can identify at least four hierarchical levels of different procedures and/or memory
usage: (i) Cluster Level: it is composed of all processes running in all machines being used in a simulation; (ii)
Machine Level: it is composed of all processes running in one individual machine among all those used in a
simulation; (iii) Processor Level: it is composed of all processes running in one individual processor among all
those running in one individual machine; (iv) Process Level: it is composed of one single process running in one
individual processor among all other processes in this same processor. This last level can be further divided into two
sub-levels: (iv.i) Core Sub-level: it is composed of all parts of the code from one individual process, which is not
strongly hardware specific; (iv.ii) Software-Hardware (SH) Sub-level: it is composed of all parts of the code from
one individual process, which is strongly hardware specific (cache management, fpga or GPU acceleration, etc.)

Now, we explain the structure and behavior of MPhyScas-P framework. There are two views of the MPhyScas-P: (i)
Logical View: the logic of MPhyScas-P's workflow is the same as the MPhyScas-S', that is, it has the same levels of
procedures (Kernel, Blocks, Groups and Phenomena), all relationships between them are preserved and all procedures
within each layer are technically the same (besides the fact that data are now distributed). Therefore the relationships
among entities in the different levels of MPhyScas-P is also a DAG (direct acyclic graph). Thus, we are able of
cloning a suitable modification of MPhyScas-S to all processes in a SPMD scheme. In this sense, one can imagine
that MPhyScas-P is MPhyScas-S with distributed data and a hierarchical synchronization scheme (see Topological
View below); (ii) Topological View: the topology of the procedures in the workflow of MPhyScas-S is implemented
in MPhyScas-P in a hierarchical form with the aid of a set of processes, which are responsible for the synchronization
of some processes. We identify three types of processes (see Figure 1): (ii.i) ClusterRank Process: it is responsible
for the execution of the Kernel and to synchronize the beginning and the end of each one of its level's tasks, which
requires demands to lower level processes. In a simulation there is only one ClusterRank process (for instance, the
process with rank equal to zero in an MPI based system). Figure 2 depicts the relationship between a ClusterRank
process and the simulator layers; (ii.ii) MachineRank Processes: one process is chosen among all processes running
in an individual machine (a cluster node) to be its leader. Thus, there is only one MachineRank process per machine.
It is responsible for the execution of procedures in the Block level and to synchronize the beginning and the end of
each one of its level's tasks, which requires demands to lower level processes. ClusterRank is also the MachineRank
in its own machine. Figure 3 depicts the relationship between a MachineRank process and the simulator layers; (ii.iii)
ProcessRank Processes: it is responsible for the execution of the procedures in the Group level. The ClusterRank and
all MachineRank processes are also ProcessRank processes. Figure 4 depicts the relationship between a ProcessRank
process and the simulator layers.

121

Machine Rank

PrpcessF?ank

FIGURE 1. Hierarchy of the simulator in MPhyScas-P

FIGURE 2. Layers with procedures executed by cIusterRank in MPhyScas-P

FIGURE 3. Layers with procedures executed by machnineRank processes in MPhyScas-P

122

Processor Processor Processor

Pro es ^ n k

Processor Processor

BlockAmbassador

Group k

Remaining processes execute
procedures in aii iayers from Group

Layer downwards.

FIGURE 4. Layers with procedures executed by processRank processes in MPhyScas-P

The framework MPhyScas-S [1] has satisfactorily solved the main problems related to data dependence and shar­
ing between phenomena for the sequential processing. However, an essential difference, when considering parallel
processing, is the need for interprocess communication and synchronization. Communication can be of three generic
types: (a) Communication during linear algebra operations: Code parallehzation imphes that interprocess commu­
nication is needed during several linear algebra operations (e. g., matrix-vector multiphcation); (b) Communication
along process hierarchy: The establishment of the hierarchy of procedures will require some processes to assume
some kind of leadership depending on the layer where they are located. This will require interprocess communica­
tion throughout the hierarchy; (c) Communication for coupled information: MPhyScas-S has dealt with coupling
dependences between different phenomena already, but in parallel processing this type of dependence can become
more complex. Whenever a coupled quantity had to be computed by one given Phenomenon object and the coupled
information (information from other phenomenon) is not available in the current process, interprocess communication
should take place. Such an information frequently depends on the place where the quantity is being computed.

Those three types of communication are implemented (using groups of processes and threads) by two patterns:
(i) ControLComm pattern: one group of processes involving the ClusterRank - as many groups of processes as the
number of MachineRanks - relating them with their respective ProcessRank processes; and (ii) DataTransfer_Comm
pattern: takes care of any geometry dependent information between two processes (types (a) and (c)). Those patterns
are automatically instantiated and locahzed in the pre-processing phase.

CONCLUSIONS

We presented the framework MPhyScas-P aimed at supporting the automatic development of high performance
simulators for multi-physics problems. This framework inherits from MPhyScas-S (its sequential version) all its
workflow representation, with the obvious difference that MPhyScas-P is distributed in a hierarchical way. Although
MPhyScas-S has already a fully functional prototype, MPhyScas-P has a prototype (using MPI) currently being tested.

REFERENCES

1. R Santos, E. J. Brito, J. M. Barbosa, Coping with data dependence and sharing in the simulation of coupled phenomena.
International Congress on Computational and Applied Mathematics, Leuven, Belgium, 2006.

2. R. Niekamp, Software component architecture, http://congress.cimne.upc.eS/cfsi/frontal/doc/ppt/l 1 .pdf.
3. http://www.comsol.com/.
4. S. G. Parker, A component-based architecture for parallel multi-physics pde simulation. Future Generation Computer Systems,

(22): 204216, 2006.
5. A. G. Lanfermann, et al. The Cactus framework and toolkit: Design and applications. Vector and Parallel Processing, 2002, 5th

International Conference, Springer, 2003.
6. H. C. Edwards, Sierra framework version 3: Core services theory an design, Sandia National Laboratory, report SAND2002-

3616, November 2002.

123

http://congress.cimne.upc.eS/cfsi/frontal/doc/ppt/l
http://www.comsol.com/

